Jump to content

NASA Pilot Program Continues to Award Small Business Innovators 


Recommended Posts

  • Publishers
Posted
The letters NASA

Earlier this month, nine small businesses received 2023 NASA Small Business Innovation Research (SBIR) Ignite Phase II awards to further develop technologies that may be used in the agency’s missions and in the commercial space industry. 

The SBIR Ignite Phase II awardees, who will receive up to $850,000 to fund their projects, are developing technology capabilities in the detection of wildfires, support for water management in agriculture, in-space debris detection, mineral mining from lunar regolith, in-space production, and more. These capabilities are vital to supporting deep space exploration, low Earth orbit missions, and preserving life on our home planet for the benefit of all. The businesses initially were selected for Phase I awards in 2023 and provided six months and up to $150,000 to prove their concepts before competing for Phase II. 

“We want to support innovators across the aerospace industry because their technologies have the potential to make a big impact in the commercial market. A rich and diverse marketplace creates more opportunity for us all. These Phase II awards illuminate a clear path for a unique range of technologies that we believe will positively influence the lives of all Americans.”

Jason L. Kessler

Jason L. Kessler

NASA SBIR/STTR Program Executive

The SBIR Ignite pilot initiative supports product-driven small businesses, startups, and entrepreneurs that have commercialization at the forefront of their innovation strategies and processes but that are not targeting NASA as a primary customer. The pilot initiative provides funding and other support to mitigate risk in technologies that have strong commercial potential by offering lower barriers to entry, a streamlined review and selection process, and accelerated technology development and awards as compared to the NASA SBIR program’s main solicitation. It also focuses on helping make participating companies more appealing to investors, customers, and partners, while fulfilling SBIR’s mission of increasing commercialization of innovations derived from federal research and development. 

While the agency’s main Small Business Innovation Research and Small Business Technology Transfer solicitations focus on technologies with potential for infusion in both NASA missions and commercialization in the marketplace, the SBIR Ignite opportunity is less prescriptive and focuses on topics that are relevant to emerging commercial markets in aerospace, such as accelerating in-space production applications in low Earth orbit.  

The awarded companies are: 

  • Astral Forge, LLC, Palo Alto, California 
  • Astrobotic Technology Inc., Pittsburgh 
  • Benchmark Space Systems, Burlington, Vermont 
  • Brayton Energy, LLC, Hampton, New Hampshire 
  • Channel-Logistics LLC dba Space-Eyes, Miami 
  • GeoVisual Analytics, Westminster, Colorado 
  • Space Lab Technologies, LLC, Boulder, Colorado 
  • Space Tango, Lexington, Kentucky 
  • VerdeGo Aero, De Leon Springs, Florida 

The third year of NASA Small Business Innovation Research (SBIR) Ignite is underway, as the 2024 SBIR Ignite Phase I solicitation closed on July 30, 2024. Those selections are expected to be announced Fall 2024.

NASA’s Small Business Innovation Research and Small Business Technology Transfer program is part of NASA’s Space Technology Mission Directorate and is managed by NASA’s Ames Research Center in Silicon Valley. 

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronauts Anne McClain (bottom) and Nichole Ayers (top), both Expedition 73 Flight Engineers, checkout spacesuit hardware in the Quest airlock and review procedures for a May 1 spacewalk. Credit: NASA Johnson Space Center NASA astronauts Nichole Ayers and Anne McClain will answer prerecorded questions about science, technology, engineering, and mathematics from students in Bethpage, New York. The two astronauts are currently aboard the International Space Station.
      Watch the 20-minute Earth-to-space call at 12:45 p.m. EDT on Friday, May 16, on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Tuesday, May 13, by contacting Francesca Russell at: frussell@syntaxny.com or 516-644-4330.
      The event is hosted by Central Boulevard Elementary School. As part of the call, students will highlight their year-long reading program, “Reading is a Blast-Exploring a Universe of Stories.”
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated May 09, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters International Space Station (ISS) Johnson Space Center View the full article
    • By NASA
      3 min read
      NASA Study Reveals Venus Crust Surprise
      This global view of the surface of Venus is centered at 180 degrees east longitude. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer Venus Orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. NASA/JPL-Caltech New details about the crust on Venus include some surprises about the geology of Earth’s hotter twin, according to new NASA-funded research that describes movements of the planet’s crust.
      Scientists expected the outermost layer of Venus’ crust would grow thicker and thicker over time given its apparent lack of forces that would drive the crust back into the planet’s interior. But the paper, published in Nature Communications, proposes a crust metamorphism process based on rock density and melting cycles.
      Earth’s rocky crust is made up of massive plates that slowly move, forming folds and faults in a process known as plate tectonics. For example, when two plates collide, the lighter plate slides on top of the denser one, forcing it downward into the layer beneath it, the mantle. This process, known as subduction, helps control the thickness of Earth’s crust. The rocks making up the bottom plate experience changes caused by increasing temperature and pressure as it sinks deeper into the interior of the planet. Those changes are known as metamorphism, which is one cause of volcanic activity.
      In contrast, Venus has a crust that is all one piece, with no evidence for subduction caused by plate tectonics like on Earth, explained Justin Filiberto, deputy chief of NASA’s Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston and a co-author on the paper. The paper used modeling to determine that its crust is about 25 miles (40 kilometers) thick on average and at most 40 miles (65 kilometers) thick.
      “That is surprisingly thin, given conditions on the planet,” said Filiberto. “It turns out that, according to our models, as the crust grows thicker, the bottom of it becomes so dense that it either breaks off and becomes part of the mantle or gets hot enough to melt.” So, while Venus has no moving plates, its crust does experience metamorphism. This finding is an important step toward understanding geological processes and evolution of the planet.
      “This breaking off or melting can put water and elements back into the planet’s interior and help drive volcanic activity,” added Filiberto. “This gives us a new model for how material returns to the interior of the planet and another way to make lava and spur volcanic eruptions. It resets the playing field for how the geology, crust, and atmosphere on Venus work together.”
      The next step, he added, is to gather direct data about Venus’ crust to test and refine these models. Several upcoming missions, including NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) and VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) and, in partnership with ESA (European Space Agency), Envision, aim to study the planet’s surface and atmosphere in greater detail. These efforts could help confirm whether processes like metamorphism and recycling are actively shaping the Venusian crust today—and reveal how such activity may be tied to volcanic and atmospheric evolution.
      “We don’t actually know how much volcanic activity is on Venus,” Filiberto said. “We assume there is a lot, and research says there should be, but we’d need more data to know for sure.”
      Melissa Gaskill
      NASA Johnson Space Center
      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Victoria Segovia
      NASA’s Johnson Space Center
      281-483-5111
      victoria.segovia@nasa.gov

      Read More About Venus

      Share








      Details
      Last Updated May 09, 2025 Related Terms
      Astromaterials Venus Explore More
      5 min read How NASA is Using Virtual Reality to Prepare for Science on Moon


      Article


      2 months ago
      5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…


      Article


      5 months ago
      5 min read 5 Surprising NASA Heliophysics Discoveries Not Related to the Sun


      Article


      6 months ago
      Keep Exploring Discover Related Topics
      Venus



      Astromaterials



      Planetary Science



      Solar System


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
      The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
      “Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
      The two nominations include:
      Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
      In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
      Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.  
      For more information about NASA missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated May 08, 2025 Related Terms
      General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 Min Read NASA Telescopes Tune Into a Black Hole Prelude, Fugue
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).
      This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes. This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.
      WR 124 
      Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.
      SS 433
      Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.
      Centarus A
      Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.
      For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/
      These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      To learn more about NASA’s space telescopes, visit:
      https://science.nasa.gov/universe
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.
      The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.
      The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 08, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Black Holes Galaxies, Stars, & Black Holes IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 2 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets
      Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes
      Lee esta nota de prensa en español aquí. For the first time, astronomers have probed…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Chandra X-ray Observatory
      Launched on July 23, 1999, it is the largest and most sophisticated X-ray observatory to date. NASA’s Chandra X-ray Observatory…
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      Universe
      IXPE
      View the full article
    • By NASA
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      The NASA Data Acquisition System, developed at NASA Stennis, is used in multiple test areas at NASA’s Marshall Space Flight Center in Huntsville, Alabama, including Test Facility 116. The facility consists of an open-steel test stand structure, primarily used for subscale testing, and three adjacent test bays designed for large-scale/full-scale testing. NASA/Marshall Space Flight Center Teams at NASA’s Langley Research Center in Hampton, Virginia conduct a test in the 8-Foot High-Temperature Tunnel. The NASA Data Acquisition System, developed at NASA Stennis, represents a potential solution for engineers seeking to standardize data systems at NASA Langley. NASA/Langley Research Center Teams at Test Stand 403, located at NASA’s White Sands Test Facility in Las Cruces, New Mexico, plan to use the NASA Data Acquisition System to support testing and development projects related to NASA’s Orion spacecraft.NASA/White Sands Test Facility A data-focused software tool created at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, continues to expand its capabilities and use across the agency.
      Much like the software on a cell phone, the NASA Data Acquisition System (NDAS) software evolves with updates to meet user needs.
      “It is not just because we are seeking new opportunities that we evolve,” said Kris Mobbs, NASA project manager for NDAS. “It is because the community of people using this software tell us about all the new, cool things happening and how they want to use the tool.”
      Created as a standard method for collecting rocket propulsion test data, NDAS is proving to be a building block to acquire, display, and process various datasets. The flexibility of the software has supplied solutions for NASA’s work in New Mexico and Alabama and is being evaluated for data acquisition needs in Virginia.
      When NASA’s White Sands Test Facility in Las Cruces, New Mexico, needed a new data acquisition system with a flexible design, the facility reached out to NASA Stennis since the center had demonstrated success with a similar challenge.
      “A major benefit for the agency is having a software platform that is agency owned and developed,” said Josh Simmons, White Sands technical upgrades lead. “Stennis is leading the way and the way the system is written and documented, other programmers can jump in, and the way they have it designed, it can continue on and that is key.”
      The NASA Stennis team updated its NDAS platform based on input from White Sands personnel to make it more adaptable and to increase data acquisition rates.
      “They look to understand the requirements and to develop an application that is flexible to meet everybody’s requirements,” Simmons said. “They are always willing to improve it, to make it more applicable to a wider audience.”
      NDAS will be the primary data acquisition and control systems to support testing and development projects related to NASA’s Orion spacecraft.
      “I would like to standardize around it here at White Sands,” said Simmons. “I want to show the worth and versatility of NDAS, so people who need it make a choice to use it.”
      Meanwhile at NASA’s Marshall Space Flight Center in Huntsville, Alabama, NDAS is used in multiple areas for small-scale, subscale, and full-scale testing.
      Devin Rios Ogle is a contractor software engineer at NASA Marshall, responsible for integrating and upgrading the data acquisition system in the testing areas. The system is used to record data on test sequences to verify they happen as intended.
      “The visualization of data is really nice compared to other software I have worked with,” said Rios Ogle. “It is easier to see what data you want to see when you want to see it. You select a measurement, and you can see it in graph form, or tabular form, or however you would like. It is visually appealing and very easy to find the stuff you need.”
      Rios Ogle is familiar with the database behind the system and understands what the program is trying to do. He particularly noted the modular approach built into the system, which allows users to adapt the software as needed and is a feature others would find beneficial.
      Marcus Jackson, a contractor instrumentation and control engineer at NASA Marshall, echoed Ogle’s assessment of NDAS, noting that it has allowed the center to condense multiple systems into a single package that meets the team’s unique needs.
      “Ultimately, NDAS provides us with an excellent software package that is built specifically for the kind of work performed here and at other test stands across the United States,” said Jackson. “It is easy to install, manage, and scale up. It doesn’t break, but if you do find a bug or issue, the NDAS team is very quick to respond and help you find a solution.”
      NDAS also represents a potential solution for engineers seeking to standardize data systems at NASA’s Langley Research Center in Hampton, Virginia, a use that could positively impact a mission’s ability to make data-informed decisions.
      “We are investigating alternatives for standardization at all Langley facilities,” said Scott Simmons, NASA Langley data systems engineer. “Standardization has the potential for significant maintenance cost savings and efficiencies because of the sharing of the software. Having an instance of NDAS available for the dynamic data system at the 8-Foot High Temperature tunnel enables us to evaluate it as a potential solution for standardization at Langley.”
      As the nation’s largest hypersonic blow-down test facility, the tunnel duplicates, as near as possible, flight conditions that would be encountered by hypersonic vehicles at up to Mach 6.5, or more than six times the speed of sound.
      Even as its use grows, the NASA Stennis-led software project continues to gain momentum as it expands its capabilities and collaboration with users.
      “The goal is to provide a software portfolio that supports a wide range of exciting NASA projects, involving lots of talented people that collaborate and innovate new software solutions far into the future,” Mobbs said. “This is a community of innovative, ambitious, and supportive engineers and scientists across all engineering disciplines that are dedicated to advancing NASA’s bold missions.”
      Read More Share
      Details
      Last Updated May 08, 2025 Related Terms
      Stennis Space Center View the full article
  • Check out these Videos

×
×
  • Create New...